Skip to main content

Please Engage

Chapters 2–4: Canvas and Matrices

An outdoor portrait of Eric McCarthy, a white male. He’s looking at the camera and smiling while wearing glasses and a red collared button up T-shirt. Behind him are out-of-focus palm trees, a body of water, and what might be a few white sailboats.

In the previous post I went a little further than the exercise at the end of the chapter asked for and created a web component that exercised my tuple implementation and included animation of the projectile. As it turns out, this wound up being very similar to the exercise at the end of chapter 2, which is about implementing a canvas. So I decided to skip that exercise and continue onto the next two chapters which walk you through implementing various matrix math operations.

Implementing the Canvas Class

Implementing a canvas class when targeting a web runtime is perhaps unnecessary since <canvas> provides a solid 2D canvas JavaScript API. However, the book has you implement color functions for tuples containing floats so a canvas that stores colors with floats instead of integer values seems like it might be a better bet going forward. So I decided to implement my own Canvas class backed by a Float32Array.

I went with 32-bit floats over the JavaScript-native 64-bit floats since I am still planning on porting this to AssemblyScript to take advantage of the v128 SIMD operations in WebAssembly. The “128” in “v128” implies you can either have an SIMD instruction operate either on 4 32-bit floats or 2 64-bit floats. Four-times-faster is better than two-times-faster. And based on a bit of research the extra precision is usually not needed or at least easy to avoid needing.

Using a TypedArray also opens the doors to backing a canvas with a SharedArrayBuffer or something similar. I can imagine this being useful by having the ray tracer running in many WebWorkers, all updating a shared canvas.

There’s a bit of a snag with SharedArrayBuffer however…

A Side Quest to Move Away From GitHub Pages

In response to the Spectre vulnerability, browser vendors updated the SharedArrayBuffer constructor to throw so that it could not be abused until they had a fix. The fix they ultimately adopted requires sending two HTTP headers with your HTML document. Well, you can’t set HTTP headers on GitHub Pages, where I was previously hosting this site.

I always planned on moving this site to my personal website, limulus.net. But my setup for limulus.net is very out-of-date. I have a GitHub repository for it but deployment is no longer automated. I just manually upload any changes to S3. None of the other infrastructure for it like the CloudFront distribution has been turned into CloudFormation templates so it’s all just sitting in AWS resources without any version control. I wanted to avoid adding to that mess for now by publishing to GitHub Pages.

Even though I know SharedArrayBuffer may not be how I ultimately choose to implement things I also didn’t want to be in the situation where I am forced into switching away from GitHub Pages in the middle of the project instead of early on. In the (ok, unlikely) event that anyone was subscribed to the RSS feed setting up redirects on GitHub Pages for that might be tricky. Better to just get it out of the way as soon as possible.

In a bid to get things done though I resisted the urge to write CloudFormation templates for everything, so unfortunately I have added to my AWS technical debt. However I did spend the time set things up in the new ways AWS recommends: I’m using GitHub’s OIDC provider to get temporary AWS credentials for the GitHub Action that publishes this site and I avoided setting up the S3 bucket to use public website mode. I learned that to get CloudFront to serve index.html files for directories served from a private S3 origin you need to write a CloudFront Function to rewrite the request. So unfortunately that means I now have a tiny bit of code for hosting this site that is not version controlled. But at least now I know how to set these things up in a more secure way.

Implementing the Matrix Class

There’s only a few things particularly interesting about the implementation of my Matrix class.

A Surprise Subclass

It likely should not have come as a surprise that the Tuple implementation would need to be treated as a matrix when doing matrix math operations. In fact, tuples need to be treated as matrixes of four rows, which is not my intuition about how to conceptualize an array of four items. It was seeming like I was going to need special handling in my Matrix class to account for whenever it was passed a Tuple and that felt messy. The solution I landed on was to create a TwoDimensionalArray class that would act as the base class for both the Tuple and Matrix classes. This way, the Tuple class can construct itself with 1 column and 4 rows and the Matrix class doesn’t have to treat Tuples as special cases.

This kind of refactor is definitely where having a robust test suite (in this case provided by the book) shines. I had confidence in a relatively substantial refactor without any added effort.

Chaining Matrix Transformations

While I won’t pretend to understand the reasons why (maybe I knew back when I took linear algebra?) if you want a transformation matrix to have multiple transformations you have to multiply them in reverse order. In other words, if you want a matrix that you can use to do a translation, then a rotation, then a scaling up, you need to first multiply the scaling matrix by the rotation matrix, and then the result by the translation matrix. The books suggests that you implement a “fluent” API of chainable methods that takes care of this for you. For example:

const twoOClock = Matrix.transformation()
  .translate(0, 1, 0)
  .rotateZ(-(2 / 12) * 2 * Math.PI)
  .scale(clockRadius, -clockRadius, 0)

What I’ve seen frequently in JS APIs is that they often require something like a final .done() method to perform the final calculations and produce the end result of the chain of operations. However, there is a way around this if you can structure your class to have the first attempt to read the values of the returned object do the finalization.

Here’s how that works with my Matrix class. The following is a selection of methods that demonstrate it. The .translate(), .rotateZ(), and scale() methods in the example above all call .#pushOperation() to push their operation onto the #operationStack array and return this.

export class Matrix extends TwoDimensionalArray {
  static transformation() {
    const chainable = Matrix.identity(4)
    chainable.#operationStack = []
    return chainable
  }

  #operationStack?: Matrix[]

  protected override get values() {
    if (this.#operationStack) {
      const operationStack = this.#operationStack
      this.#operationStack = undefined
      const result = operationStack.reduceRight(
        (result, operation) => result.mul(operation),
        this
      )
      super.values = result.values
    }
    return super.values
  }

  #pushOperation(operation: Matrix): this {
    if (!this.#operationStack) {
      throw new Error('Attempted to push operation to non-chainable matrix')
    }
    this.#operationStack.push(operation)
    return this
  }
}

The Demo: <pixel-clock>

The end-of-chapter exercise for chapter 5 is to use your matrix and canvas implementation to color in a pixel for every hour of a 12 hour analog clock. I did two things I really didn’t have to for this exercise: add animated “hands” and perform the rendering in a Web Worker.

Now that I have some hands-on experience with Web Workers I expect to be able to offload the work of the ray tracer off the main thread, and possibly even parallelize the work into multiple workers.

Up Next: Finally Casting Some Rays!

Now that these fundamentals are out of the way and I’ve got this site hosted where I want it, there should be less of a delay until the next post. With any luck the next post will also not be quite as long!